Distributed Shortest-Path Bellman Ford Algorithm in Distributed Systems



978 views Distributed Systems



Determining the shortest path in a distributed system is an important problem to address and it finds its application across multiple use cases like

  • delivering messages to a node efficiently
  • efficient routing of messages

A key point to consider here is the fact that “shortest” is not only about the distance, but it can also be about the congestion, time, cost of communication lines, cable infra, and much more.

Problem statement

In a distributed network, where nodes are connected via paths/edges having some weight assigned, find the shortest path from a specific source to all the nodes

Bellman-Ford Algorithm in Distributed System

In this gist, we discuss a synchronous approach which means every node moves forward in the algorithm in sync. There are ways to achieve this, but the implementation of synchronous behavior is out of the scope of this gist.

Because it is a distributed network no node knows the entire topology and weights. They just know

  • total number of nodes
  • their immediate neighbors, and
  • the weights of the edges incident on it.

Every node keeps track of dist which holds the shortest distance to it from the source i0. Initially, dist at i0 will be 0 and dist at all other nodes will be inf.

At every round, all the nodes will send their dist across all of their outgoing edges to their neighboring nodes. Every node i upon receiving an incoming dist from its immediate neighbor j compares

  • its own dist
  • incoming dist + weight(i, j)

after comparing, if the incoming distance plus the weight of the connecting edge is smaller than its own dist it means that the distance from i0 to the current node could be shorter and hence, the node updates the parent suggesting that the shortest path from i0 to i goes through j.

After n - 1 rounds, the dist at every node will contain the shortest distance to it from source i0, and the parent will contain one of its immediate neighbors that lies in the shortest path.

Complexity Analysis

We require n - 1 rounds to complete the algorithm, the time complexity of Bellman-Ford Shortest Path in Distributed System is O(n). At every round, every node sends dist message across all of its edges to its immediate neighbors, the communication complexity becomes O(n x |E|).


Arpit Bhayani

Arpit's Newsletter

CS newsletter for the curious engineers

❤️ by 38000+ readers

If you like what you read subscribe you can always subscribe to my newsletter and get the post delivered straight to your inbox. I write essays on various engineering topics and share it through my weekly newsletter.




Other essays that you might like



Be a better engineer

A set of courses designed to make you a better engineer and excel at your career; no-fluff, pure engineering.


Paid Courses

System Design for Beginners

A masterclass that helps early engineers and product managers become great at designing scalable systems.

300+ learners

Details →

System Design Masterclass

A masterclass that helps you become great at designing scalable, fault-tolerant, and highly available systems.

1000+ learners

Details →

Redis Internals

Learn internals of Redis by re-implementing some of the core features in Golang.

98+ learners

Details →

Free Courses

Designing Microservices

A free playlist to help you understand Microservices and their high-level patterns in depth.

823+ learners

Details →

GitHub Outage Dissections

A free playlist to help you learn core engineering from outages that happened at GitHub.

651+ learners

Details →

Hash Table Internals

A free playlist to help you understand the internal workings and construction of Hash Tables.

1027+ learners

Details →

BitTorrent Internals

A free playlist to help you understand the algorithms and strategies that power P2P networks and BitTorrent.

692+ learners

Details →